RISIKO FRAKTUR PADA PARUH BAYA DAN LANSIA
Abstract
The middle-aged and elderly are at risk for osteoporotic fractures based on the increased incidence of fractures with age, changes in lifestyle habits, pharmacologic therapies, and medical conditions that may increase the risk of osteoporotic fractures. The incidence of osteoporotic fractures is expected to grow in the future. Based on this phenomenon, preventive efforts are needed with early detection of fracture risk screening to reduce and prevent osteoporotic fractures in middle-aged and elderly in the future. This study aimed to determine the risk of fracture in middle-aged and elderly. The research method used descriptive quantitative. The research sample amounted to 120 respondents with the sampling technique using consecutive sampling. The research instrument used FRAX® Tool without BMD consisting of 11 question items assessed as valid and reliable as a fracture risk screening tool. The results study showed that all middle-aged had a low risk of major osteoporotic fracture (100%) and a low risk of hip fracture (100%). The majority of the elderly had a low risk of major osteoporotic fracture (96.7%) and a low risk of hip fracture (83.3%). The study also showed that the risk of major osteoporotic fracture and hip fracture was higher in the elderly than in the middle-aged. Preventive efforts need to be balanced with controlling various risk factors for osteoporotic fractures which can be done by leading a healthy lifestyle, such as regular physical activity, increased intake of calcium and vitamin D nutrients, adequate sun exposure, and reducing smoking.
Full text article
References
2. WHO. Musculoskeletal Health. Published 2022. https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions
3. Kementerian Kesehatan RI. Laporan Nasional Riset Kesehatan Dasar (Riskesdas) 2018. Published online 2018. http://www.yankes.kemkes.go.id/assets/downloads/PMK No. 57 Tahun 2013 tentang PTRM.pdf
4. Mujiadi, Rachmah S. Buku Ajar Keperawatan Gerontik. (Kartiningrum ED, ed.). STIKes Majapahit Mojokerto; 2022. https://ejournal.stikesmajapahit.ac.id/index.php/EBook/article/view/804
5. Undang-Undang Repubik Indonesia tentang Kesejahteraan Lanjut Usia Nomor 13 Tahun 1998 Pasal 1 Ayat 2. Published online 1998.
6. International Osteoporosis Foundation. Fragility Fractures. Published 2023. Accessed October 18, 2023. https://www.osteoporosis.foundation/health-professionals/fragility-fractures
7. NICE. Osteoporosis: Assessing the Risk of Fragility Fracture. Published 2017. https://www.nice.org.uk/guidance/cg146/chapter/Introduction
8. Coughlan T, Dockery F. Osteoporosis and Fracture Risk in Older People. Clin Med J R Coll Physicians London. 2014;14(2):187-191. doi:10.7861/clinmedicine.14-2-187
9. Barron RL, Oster G, Grauer A, Crittenden DB, Weycker D. Determinants of Imminent Fracture Risk in Postmenopausal Women with Osteoporosis. Osteoporos Int. 2020;31(11):2103-2111. doi:10.1007/s00198-020-05294-3
10. Kepel FR, Lengkong AC. Fraktur Geriatrik. 2020;8(2):203-210. doi:10.35790/ecl.8.2.2020.30179
11. Cockerham WC, D. Wolfe J, Bauldry S. Health Lifestyles in Late Middle Age. Res Aging. 2020;42(1):34-46. doi:10.1177/0164027519884760
12. Kanis JA, Harvey NC, Johansson H, Oden A, Leslie WD, McCloskey E V. FRAX Update. J Clin Densiometry. 2017;20(3):360-367. doi:https://doi.org/10.1016/j.jocd.2017.06.022
13. Fan Z, Li X, Zhang X, Yang Y, Fei Q, Guo A. Comparison of OSTA, FRAX and BMI for Predicting Postmenopausal Osteoporosis in a Han Population in Beijing: A Cross Sectional Study. Clin Interv Aging. 2020;Volume 15:1171-1180. doi:10.2147/CIA.S257166
14. Crandall CJ, Schousboe JT, Morin SN, Lix LM, Leslie W. Performance of FRAX and FRAX-Based Treatment Thresholds in Women Aged 40 Years and Older: The Manitoba BMD Registry. J Bone Miner Res. 2019;34(8):1419-1427. doi:10.1002/jbmr.3717
15. Dagan N, Cohen-Stavi C, Leventer-Roberts M, Balicer RD. External Validation and Comparison of Three Prediction Tools for Risk of Osteoporotic Fractures Using Data from Population Based Electronic Health Records: Retrospective Cohort Study. BMJ. 2017;356:1-15. doi:10.1136/bmj.i6755
16. Villa P, Lassandro AP, Moruzzi MC, et al. A Non-Invasive Prevention Program Model for The Assessment of Osteoporosis in The Early Postmenopausal Period: a Pilot Study on FRAX(®) and QUS Tools Advantages. J Endocrinol Invest. 2016;39(2):191-198. doi:10.1007/s40618-015-0341-4
17. Oka R, Ohira M, Suzuki S, et al. Fracture Risk Assessment Tool (FRAX) and for the Diagnosis of Osteoporosis in Japanese Middle-Aged and Elderly Women: Chiba Bone Survey. Endocr J. 2018;65(2):193-202. doi:10.1507/endocrj.EJ17-0331
18. Wang J, Wang X, Fang Z, Lu N, Han L. The Effect of FRAX on the Prediction of Osteoporotic Fractures in Urban Middle-Aged and Elderly Healthy Chinese Adults. Clinics. 2017;72(5):289-293. doi:10.6061/clinics/2017(05)06
19. Mohamed AM. An Overview of Bone Cells and Their Regulating Factors of Differentiation. Malays J Med Sci. 2008;15(1):4-12.
20. Sims NA, Martin TJ. Coupling the Activities of Bone Formation and Resorption: A Multitude of Signals Within the Basic Multicellular Unit. Bonekey Rep. 2014;3:481. doi:10.1038/bonekey.2013.215
21. Hong Wei Li Hui-lin, Du Yan-ping, Tang Wen-jing, Chen Min-min, Yu Wei-jia, Qiao Wen-long, Cheng Qun ZS bai. Validation of Osteoporotic Fracture Risk Assessment Tool FRAX® in Identifying Osteoporotic Vertebral Fractures (OVF) of Community-Dwelling Elderly People in Shanghai. Fudan Univ J Med Sci. 2020;47(01):83-88,100. doi:10.3969/j.issn.1672-8467.2020.01.014
22. Mustamsir E, Irsan II, Huwae TECJ, et al. Study Epidemiology of Risk Fracture in Osteoporosis Based on FRAX Score, and OSTA Score, with Risk of Fall using Ontario Score in Elderly Indonesia. J Public health Res. 2022;11(3). doi:10.1177/22799036221115777
23. Nashirin AK. Hubungan Nilai Indeks Massa Tubuh Dengan Nilai Risiko Fraktur Osteoporosis Berdasarkan Perhitungan FRAX® Tool Pada Wanita Usia ≥50 Tahun Di Klub Bina Lansia Pisangan Ciputat Tahun 2015. Univesitas Islam Negeri Syarif Hidayatullah; 2015.
24. Rahhim NFFBM, Tiksnadi B, Buchori E. Identification of Risk Factors for Osteoporotic Fracture Using Fracture Risk Assessment Tool in Dr . Hasan Sadikin General Hospital , Bandung , Indonesia from June to December 2013. Althea Med J. 2015;2(September 2015):423-428.
25. Bartosch P, Malmgren L. Can Frailty in Conjunction with FRAX Identify Additional Women at Risk of Fracture - a Longitudinal Cohort Study of Community Dwelling Older Women. BMC Geriatr. 2022;22(1):1-10. doi:10.1186/s12877-022-03639-7
26. Herrera A, Mateo J, Gil-Albarova J, et al. Prevalence of Osteoporotic Vertebral Fracture in Spanish Women Over Age 45. Maturitas. 2015;80(3):288-295. doi:10.1016/j.maturitas.2014.12.004
27. Alswat KA. Gender Disparities in Osteoporosis. J Clin Med Res. 2017;9(5):382-387. doi:10.14740/jocmr2970w
28. Wang D, Liu N, Gao Y, Li P, Tian M. Association Between Metabolic Syndrome and Osteoporotic Fracture in Middle-Aged and Elderly ChinesePeoples. Cell Biochem Biophys. 2014;70(2):1297-1303. doi:10.1007/s12013-014-0054-x
29. Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis. 2012;4(2):61-76. doi:10.1177/1759720X11430858
30. Compston JE, Watts NB, Chapurlat R, et al. Obesity is Not Protective Against Fracture in Postmenopausal Women: GLOW. Am J Med. 2011;124(11):1043-1050. doi:10.1016/j.amjmed.2011.06.013
31. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal Relations of Subcutaneous and Visceral Fat to Bone Structure and Strength. J Clin Endocrinol Metab. 2009;94(9):3387-3393. doi:10.1210/jc.2008-2422
32. Kuru P, Akyüz G, Cerşit HP, et al. Fracture History in Osteoporosis: Risk Factors and Its Effect on Quality of Life. Balkan Med J. 2014;31(4):295. doi:10.5152/BALKANMEDJ.2014.13265
33. Sriruanthong K, Philawuth N, Saloa S, Daraphongsataporn N, Sucharitpongpan W. Risk Factors of Refracture After a Fragility Fracture in Elderly. Arch Osteoporos. 2022;17(1):1-6. doi:10.1007/s11657-022-01143-4
34. Kanis JA, Johansson H, Oden A, et al. A Family History of Fracture and Fracture Risk: a Meta-Analysis. Bone. 2004;35(5):1029-1037. doi:10.1016/j.bone.2004.06.017
35. Yang S, Leslie WD, Yan L, et al. Objectively Verified Parental Hip Fracture Is an Independent Risk Factor for Fracture: a Linkage Analysis of 478,792 Parents and 261,705 Offspring. J Bone Miner Res. 2016;31(9):1753-1759. doi:10.1002/jbmr.2849
36. Dimyati KF. Correlations Between Physical Activity, Smoking Habit and Attitude in Elderly with Incidence of Osteoporosis. J Berk Epidemiol. 2017;5(1):107. doi:10.20473/jbe.v5i12017.107-117
37. Yuan S, Michaëlsson K, Wan Z, Larsson SC. Associations of Smoking and Alcohol and Coffee Intake with Fracture and Bone Mineral Density: a Mendelian Randomization Study. Calcif Tissue Int. 2019;105(6):582-588. doi:10.1007/s00223-019-00606-0
38. Breitling LP. Smoking as an Effect Modifier of the Association of Calcium Intake with Bone Mineral Density. J Clin Endocrinol Metab. 2015;100(2):626-635. doi:10.1210/JC.2014-2190
39. Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and Bone: Consequences of Endogenous and Exogenous Excess and Replacement Therapy. Endocr Rev. 2018;39(5):519-548. doi:10.1210/er.2018-00097
40. Briot K, Roux C. Glucocorticoid-Induced Osteoporosis. RMD Open. 2015;1(1):e000014-e000014. doi:10.1136/rmdopen-2014-000014
41. Chotiyarnwong P, McCloskey E V. Pathogenesis of Glucocorticoid-Induced Osteoporosis and Options for Treatment. Nat Rev Endocrinol. 2020;16(8):437-447. doi:10.1038/s41574-020-0341-0
42. Kareem R, Botleroo RA, Bhandari R, et al. The Impact of Rheumatoid Arthritis on Bone Loss: Links to Osteoporosis and Osteopenia. Cureus. Published online August 28, 2021. doi:10.7759/cureus.17519
43. Mobini M, Kashi Z, Ghobadifar A. Prevalence and Associated Factors of Osteoporosis in Female Patients with Rheumatoid Arthritis. Casp J Intern Med. 2012;3(3):447-450. https://doi.org/10.3390/jcm10051082
44. Hidayat R, Suryana BPP, Wijaya LK, et al. Diagnosis Dan Pengelolaan Artritis Reumatoid.; 2021. https://reumatologi.or.id/wp-content/uploads/2021/04/Rekomendasi-RA-Diagnosis-dan-Pengelolaan-Artritis-Reumatoid.pdf
45. Wysham KD, Baker JF, Shoback DM. Osteoporosis and Fractures in Rheumatoid Arthritis. Curr Opin Rheumatol. 2021;33(3):270-276. doi:10.1097/BOR.0000000000000789
46. Hu Z, Zhang L, Lin Z, et al. Prevalence and Risk Factors for Bone Loss in Rheumatoid Arthritis Patients from South China: Modeled by Three Methods. BMC Musculoskelet Disord. 2021;22(1):534. doi:10.1186/s12891-021-04403-5
47. Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev. 2022;43(2):240-313. doi:10.1210/endrev/bnab028
48. Godos J, Giampieri F, Chisari E, et al. Alcohol Consumption, Bone Mineral Density, and Risk of Osteoporotic Fractures: A Dose–Response Meta-Analysis. Int J Environ Res Public Health. 2022;19(3):1515. doi:10.3390/ijerph19031515
49. Luo Z, Liu Y, Liu Y, Chen H, Shi S, Liu Y. Cellular and Molecular Mechanisms of Alcohol-Induced Osteopenia. Cell Mol Life Sci. 2017;74(24):4443-4453. doi:10.1007/s00018-017-2585-y
50. Trius-Soler M, Vilas-Franquesa A, Tresserra-Rimbau A, et al. Effects of the Non-Alcoholic Fraction of Beer on Abdominal Fat, Osteoporosis, and Body Hydration in Women. Molecules. 2020;25(17):3910. doi:10.3390/molecules25173910
51. Gaddini GW, Turner RT, Grant KA, Iwaniec UT. Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton. Alcohol Clin Exp Res. 2016;40(4):657-671. doi:10.1111/acer.13000
52. Kanis JA, Cooper C, Rizzoli R, Reginster JY. European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Osteoporos Int. 2019;30(1):3-44. doi:10.1007/s00198-018-4704-5
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.