Kinetika Formaldehida (HCHO) Dan Ozon (O3) Di Daerah Urban (Studi Kasus Jakarta) (CASE STUDY: JAKARTA)

Nadiyatur Rahmatikal Wasiah, Driejana Driejana

Abstrak

Formaldehida (HCHO) merupakan senyawa karbonil yang toksik dan berperan penting dalam reaksi kimia atmosfer sebagai sumber radikal dan menjadi prekursor oksidan (terutama ozon). HCHO berasal dari sumber primer (kendaraan bermotor) dan sumber sekunder (reaksi fotokimia). Namun pemantauan dan penelitian tentang konsentrasi senyawa karbonil dan perannya dalam reaksi kimia (pembentukan ozon) pada udara perkotaan di Indonesia masih terbatas. Peneltian ini bertujuan untuk mengetahui kontribusi dan hubungan antara hidrokarbon (formaldehida) dengan ozon di daerah urban. Data yang digunakan merupakan data primer dan data sekunder. Pengukuran formaldehida dilakukan selama dua minggu dengan prinsip absorbsi dan dianalisa secara spektofotometri. Dua metode empiris yang digunakan untuk memprediksi produksi ozon yaitu metode MIR (maximum incremental reactivity) dan metode propana ekuivalen. MIR adalah metode untuk menghitung reaktivitas senyawa organik terhadap pembentukan ozon. Sedangkan metode propana-ekuivalen bertujuan mengetahui ozon berdasarkan laju oksidasi hidrokarbon (formaldehida dan propana). Berdasarkan variasi diurnal ozon, metode MIR memberikan prediksi overestimate sedangkan metode propana ekuivalen memberikan prediksi underestimate. Nilai rerata konsentrasi ozon (µg/m3) yang dihitung yaitu 34,39 (acuan data), 83,93 (metode MIR) dan 9,92 (metode propana ekuivalen). RMSE (Root Mean Squared Error)  digunakan untuk menghitung rentang kesalahan kedua metode sebesar 81,23 µg/m3 (MIR) dan 31,90 µg/m3 (propana ekuivalen). Kedua metode ini sangat mudah diaplikasikan dan cukup baik untuk digunakan dalam memprediksi konsentrasi ozon ketika data hidrokarbon yang dimiliki sangat terbatas. Oleh karena itu, untuk meningkatkan kemampuan model prediksi, dibutuhkan pengembangan alternatif metode prediksi ozon dengan menambah data meteorologis dan konsentrasi hidrokarbon lainnya.

Artikel teks lengkap

##article.generated_from_xml##

Referensi


DAFTAR RUJUKAN
1. BPS DKI Jakarta(2016). Statistik Transportasi: Jakarta
2. Coper,C.David And F.C.Alley(1986). Air Poluution Control: A Design Approach. Wiley: US
3. Never, Noel de (1995) Air Pollution Control Engineering.Wiley: USYao, Z., Jiang, X., Shen, X., Ye, Y., Cao, X., Zhang, Y., dan He, K. (2015). On-road emission characteristics of carbonyl compounds for heavy-duty diesel trucks. Aerosol and Air Quality Research, 15(3), 915–925. http://doi.org/10.4209/aaqr.2014.10.0261
4. Lai, H., Cai, Q.-Y., Wen, S., Chi, Y., Guo, S., Sheng, G., dan Fu, J. (2010). Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. The Science of the Total Environment, 408(17), 3523–3529. http://doi.org/10.1016/j.scitotenv.2010.05.013
5. Yao, Z., Jiang, X., Shen, X., Ye, Y., Cao, X., Zhang, Y., dan He, K. (2015). On-road emission characteristics of carbonyl compounds for heavy-duty diesel trucks. Aerosol and Air Quality Research, 15(3), 915–925. http://doi.org/10.4209/aaqr.2014.10.0261
6. Guo, S., Chen, M., He, X., Yang, W., dan Tan, J. (2013). Seasonal and Diurnal Characteristics of Carbonyls in Urban Air in Qinzhou , China, 2, 1–12. http://doi.org/10.4209/aaqr.2013.12.0351
7. Kim, K. H., Jahan, S. A., & Lee, J. T. (2011). Exposure to formaldehyde and its potential human health hazards. Journal of Environmental Science and Health, Part C, 29(4), 277-299. https://doi.org/10.1080/10590501.2011.629972
8. National Toxicology Program (June 2011). Report on Carcinogens, Twelfth Edition. Department of Health and Human Services, Public Health Service, National Toxicology Program. Retrieved June 10, 2011, from: http://ntp.niehs.nih.gov/go/roc12.
9. IARC (1982). IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 29 International Agency for Research on Cancer: France. 345-389.
10. Kley, D., Kleinmann, M., Sanderman, H., dan Krupa, S. (1999). Photochemical oxidants : state of the science. Environmental Pollution, 100, 19–42.
11. WHO, 2006. Air Quality Guidelines – Global Update 2005. World Health Organization, Regional Office for Europe, Copenhagen, Denmark
12. Goudarzi, G., Zallaghi, E., Neissi, A., Ahmadi, A. K., Saki, A., BABAEI, A. A., ... & Mohammadi, M. J. (2013). Cardiopulmonary mortalities and chronic obstructive pulmonary disease attributed to ozone air pollution.
13. Kalantzi, E. G., Makris, D., Duquenne, M. N., Kaklamani, S., Stapountzis, H., & Gourgoulianis, K. I. (2011). Air pollutants and morbidity of cardiopulmonary diseases in a semi-urban Greek peninsula. Atmospheric environment, 45(39), 7121-7126. https://doi.org/10.1016/j.atmosenv.2011.09.032
14. Fann, N., & Risley, D. (2013). The public health context for PM 2.5 and ozone air quality trends. Air Quality, Atmosphere & Health, 6(1), 1-11. https://doi.org/10.1007/s11869-010-0125-0
15. Chameides, W. L., Fehsenfeld., F., M. O. Rodgers., C. Cardelino., J. Martinez, Parrish., D., W. Lonneman, A. R. Lawson, R. A. Rasmussen, P. Zimmerman, J. G., Dan P. Middleton, A. T. W. (1992). Ozone Precursor Relationships in the Ambient Atmosphere. Journal of Geophysical Research, 97(91), 6037–6055.
16. Wasi’ah, N. R., & Driejana, D. (2017). Modelling of Tropospheric Ozone Concentration in Urban Environment. IPTEK Journal of Proceedings Series, 3(6). http://dx.doi.org/10.12962/j23546026.y2017i6.3279
17. Lodge Jr, J. P. (1988). Methods of air sampling and analysis. CRC Press: US
18. Wight, G. D. (1994). Fundamentals of air sampling. CRC press: US
19. Carter, W. P. L. (1994). Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air dan Waste, 44(7), 881–899. https://doi.org/10.1080/1073161X.1994.10467290
20. Atkinson, R. (2000). Atmospheric chemistry of VOCs and NO(x). Atmospheric Environment, 34(V), 2063–2101. https://doi.org/10.1016/S1352-2310(99)00460-4
21. Jenkin, M. E., dan Clemitshaw, K. C. (2002). Chapter 11 Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Developments in Environmental Science, 1, 285–338.
22. Grosjean, D. (1991). Ambient Levels of Formaldehyde , Acetaldehyde , and Formic Acid in Southern California : Results of a One-Year Base-Line Study. Environmental Science dan Technology, 25(4), 710–715. https://doi.org/10.1021/es00016a016
23. Duan, J., Tan, J., Yang, L., Wu, S., dan Hao, J. (2008). Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88(1), 25–35 https://doi.org/10.1016/j.atmosres.2007.09.004
24. Fanizza, C., Manigrasso, M., Incoronato, F., Schirò, R., dan Avino, P. (2011). Temporal trend and ozone formation potential of aromatic hydrocarbons in urban air of Rome, 539–544. http://hdl.handle.net/11695/73411
25. Possanzini, M., Tagliacozzo, G., dan Cecinato, A. (2007). Ambient Levels and Sources of Lower Carbonyls at Montelibretti, Rome (Italy). Water, Air, and Soil Pollution, 183(1–4), 447–454. https://doi.org/10.1007/s11270-007-9393-1
26. Atkinson, R., dan Arey, J. (2003). Atmospheric Degradation of Volatile Organic Compounds. Chemical Reviews, 103(3), 4605–4638. https://doi.org/10.1016/j.envsoft.2004.09.001
27. So, K. L., dan Wang, T. (2004). C3-C12 non-methane hydrocarbons in subtropical Hong Kong: Spatial-temporal variations, source-receptor relationships and photochemical reactivity. Science of the Total Environment, 328(1–3), 161–174. https://doi.org/10.1016/j.scitotenv.2004.01.029
28. Guo, S., Chen, M., dan Tan, J. (2016). Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China. Atmospheric Research, 169(July 2012), 46–53. https://doi.org/10.1016/j.atmosres.2015.09.028
29. Comrie, A. C. (1997). Comparing Neural Networks and Regression Models for Ozone Forecasting, 47(June), 653–663.
30. Sudarno. (2017). Data Analysis. Departemen Statistika Fakultas Sains dan Matematika UNDIP: Semarang
31. Hosseinibalam, F., dan Hejazi, A. (2012). Influence of Meteorological Parameters on Air Pollution in Isfahan, 3rd international conference on biology, Environment and chemistry.46.
32. Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20(10), 1263-1271. https://doi.org/10.1016/j.envsoft.2004.09.001

Penulis

Nadiyatur Rahmatikal Wasiah
nadiyatur.rahmatikal@gmail.com (Kontak utama)
Driejana Driejana
Wasiah, N. R., & Driejana, D. (2020). Kinetika Formaldehida (HCHO) Dan Ozon (O3) Di Daerah Urban (Studi Kasus Jakarta): (CASE STUDY: JAKARTA). JURNAL RISET KESEHATAN POLTEKKES DEPKES BANDUNG, Online ISSN 2579-8103, 12(1), 212–223. https://doi.org/10.34011/juriskesbdg.v12i1.1794

Rincian Artikel