STUDI IN SILICO GLIBENCLAMIDE SEBAGAI KANDIDAT OBAT ANTIKANKER PADA INHIBITOR MAP2K1 DENGAN METODE REVERS DOCKING

Ahmad Gasya Afiansyah, Rudy Mardianto, Novyananda Salmasfattah

Abstract

The severity of side effects associated with anti-cancer drugs currently on the market includes potentially fatal side effects such as cardiotoxicity in the case of doxorubicin. This research aimed to find new anti-cancer drug candidates that have low side effects. The research design used in this study was dry laboratory experimental research with in silico method, which was carried out in August 2023 at the Chemistry Laboratory of the Institute of Technology, Science and Health RSUD dr. Soepraoen. In silico approaches were computational methods for discovering new drug candidates. The ligands glibenclamide and doxorubicin were obtained from the PubChem database, and the target protein MAP2K1, obtained from the SwissModel database, served as the receptor. In this study, ligands and proteins were prepared using the PyMOL device, and the docking results obtained from the PyRx device were binding affinity values. The binding affinity between the protein and glibenclamide and doxorubicin was -9.9 kkal/mol and -8.8 kkal/mol, respectively, the docking results were visualized using PyMOL. The compounds bind glibenclamide less tightly than those that bind doxorubicin, but they still interact strongly with the MAP2K1 protein; PLIP (Protein-Ligand Interaction Profiler) can be used to visualize the effects of these interactions. According to research findings, glibenclamide compounds have good interactions with the MAP2K1 protein, which could make them promising targets for future cancer drugs. In silico is the first step in the discovery of new drugs so to validate these findings, further research is needed biochemically, in vitro, and in vivo.

Full text article

Generated from XML file

References

WHO. WHO. Published April 20, 2023. Accessed April 20, 2023. https://www.who.int/health-topics/cancer#tab=tab_1
2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
3. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomedicine and Pharmacotherapy. 2021;139:111708. doi:10.1016/j.biopha.2021.111708
4. Sebayang ANO. Efek Kardiotoksik Obat Kemoterapi Doxorubicin. JIMKI: Jurnal Ilmiah Mahasiswa Kedokteran Indonesia. 2021;7(1):1-5. doi:10.53366/jimki.v7i1.387
5. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
6. Siddiqui M, Rajkumar SV. The high cost of cancer drugs and what we can do about it. Mayo Clin Proc. 2017;87(10):935-943. doi:10.1016/j.mayocp.2012.07.007
7. Li X, Zhang XX, Lin YX, Xu XM, Li L, Yang JB. Virtual Screening Based on Ensemble Docking Targeting Wild-Type p53 for Anticancer Drug Discovery. Chem Biodivers. 2019;16(7). doi:10.1002/cbdv.201900170
8. Subramaniyam N, Arumugam S, Ezthupurakkal PB, et al. Unveiling anticancer potential of glibenclamide: Its synergistic cytotoxicity with doxorubicin on cancer cells. J Pharm Biomed Anal. 2018;154:294-301. doi:10.1016/j.jpba.2018.03.025
9. KEGG pathway. Published 2023. https://www.genome.jp/pathway/hsa04010+N01592.
10. Soleimani A, Rahmani F, Saeedi N, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem. 2019;120(12):19245-19253. doi:10.1002/jcb.29268
11. Hashemzadeh S, Ramezani F, Rafii-Tabar H. Study of Molecular Mechanism of the Interaction Between MEK1/2 and Trametinib with Docking and Molecular Dynamic Simulation. Interdiscip Sci. 2019;11(1):115-124. doi:10.1007/s12539-018-0305-4
12. Rezatabar S, Karimian A, Rameshknia V, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol. 2019;234(9):14951-14965. doi:10.1002/jcp.28334
13. Salmasfattah N, Nurulita NA, Dhiani BA. Virtual Screening on Molecules Targeting the Interaction Between Estrogen Receptor Beta and Murine Double Minute 2. Indonesian Journal of Cancer Chemoprevention. 2023;13(3):184. doi:10.14499/indonesianjcanchemoprev13iss3pp184-194
14. Dhiani BA, Nurulita NA, Fitriyani F. Protein-protein Docking Studies of Estrogen Receptor Alpha and TRIM56 Interaction for Breast Cancer Drug Screening. Indonesian Journal of Cancer Chemoprevention. 2022;13(1):46. doi:10.14499/indonesianjcanchemoprev13iss1pp46-54
15. Dona R, Frimayanti N, Ikhtiarudin I, Iskandar B, Maulana F, Silalahi NT. Studi In Silico, Sintesis, dan Uji Sitotoksik Senyawa P-Metoksi Kalkon terhadap Sel Kanker Payudara MCF-7. Jurnal Sains Farmasi & Klinis. 2019;6(3):243. doi:10.25077/jsfk.6.3.243-249.2019
16. Jean-Quartier C, Jeanquartier F, Jurisica I, Holzinger A. In silico cancer research towards 3R. BMC Cancer. 2018;18(1):1-12. doi:10.1186/s12885-018-4302-0
17. Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137:104851. doi:https://doi.org/10.1016/j.compbiomed.2021.104851
18. Tao X, Huang Y, Wang C, et al. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol. 2020;55(1):33-45. doi:10.1111/ijfs.14325
19. Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovasc Diabetol. 2017;16(1):1-12. doi:10.1186/s12933-017-0499-5
20. Dias R, de Azevedo Jr. W. Molecular Docking Algorithms. Curr Drug Targets. 2008;9(12):1040-1047. doi:10.2174/138945008786949432
21. Rezatabar S, Karimian A, Rameshknia V, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol. 2019;234(9):14951-14965. doi:10.1002/jcp.28334
22. Soleimani A, Rahmani F, Saeedi N, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem. 2019;120(12):19245-19253. doi:10.1002/jcb.29268
23. Hashemzadeh S, Ramezani F, Rafii-Tabar H. Study of Molecular Mechanism of the Interaction Between MEK1/2 and Trametinib with Docking and Molecular Dynamic Simulation. Interdiscip Sci. 2019;11(1):115-124. doi:10.1007/s12539-018-0305-4
24. Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug Discov. 2014;13(12):928-942. doi:10.1038/nrd4281
25. Pratama NAL, Meilani A, Fakih TM. Studi in Silico Senyawa Turunan Kurkuminoid Terhadap Reseptor Androgen Sebagai Kandidat Terapi Kanker Prostat. Jurnal Ilmiah Farmasi Farmasyifa. 2021;4(2):29-38. doi:10.29313/jiff.v4i2.7783
26. Arwansyah A, Ambarsari L, Sumaryada TI. Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Current Biochemistry. 2014;1(1):11-19. doi:10.29244/cb.1.1.11-19

Authors

Ahmad Gasya Afiansyah
Rudy Mardianto
rudymardianto@itsk-soepraoen.ac.id (Primary Contact)
Novyananda Salmasfattah
Afiansyah, A. G., Mardianto, R., & Salmasfattah, N. (2023). STUDI IN SILICO GLIBENCLAMIDE SEBAGAI KANDIDAT OBAT ANTIKANKER PADA INHIBITOR MAP2K1 DENGAN METODE REVERS DOCKING. JURNAL RISET KESEHATAN POLTEKKES DEPKES BANDUNG, 16(1), 99-107. https://doi.org/10.34011/juriskesbdg.v16i1.2484

Article Details