PERANAN ZINC DAN VITAMIN E SEBAGAI ANTIOKSIDAN TERHADAP SEPSIS AKIBAT INFEKSI BAKTERI STAPHYLOCOCCUS AUREUS: SYSTEMATIC LITERATURE REVIEW
Abstrak
Sepsis akibat infeksi bakteri Staphylococcus aureus merupakan kondisi serius yang memerlukan intervensi efektif untuk meningkatkan prognosis klinis. Penelitian ini bertujuan untuk meninjau peranan zinc dan vitamin E sebagai antioksidan dalam pengelolaan sepsis melalui systematic literature review (SLR) dengan mengikuti pedoman PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Prosedur penelitian ini terdiri atas empat tahap utama: identifikasi, penyaringan, kelayakan, dan inklusi, diikuti oleh analisis data secara kualitatif. Kata kunci pencarian yang digunakan dalam studi ini meliputi "zinc," "vitamin E," "sepsis," "S. aureus," "antioksidan," dan "inflammatory biomarkers." Hasil review menunjukkan bahwa zinc dan vitamin E berkontribusi signifikan dalam mengurangi aktivasi NF-κB dan peradangan, yang berperan penting dalam meningkatkan pembersihan bakteri serta kelangsungan hidup pasien, terutama neonatus. Vitamin E berfungsi sebagai antioksidan dengan mencegah peroksidasi lipid dan meningkatkan kadar antioksidan endogen seperti glutathione dan superoxide dismutase (SOD). Selain itu, vitamin E juga memiliki efek anti-inflamasi yang terlihat dari penurunan biomarker inflamasi, termasuk TNF-α dan IL-6, yang berkontribusi pada perlindungan organ vital seperti paru-paru dan hati dari kerusakan inflamasi. Zinc, di sisi lain, memperbaiki respon imun dan mengurangi inflamasi berlebihan, menunjukkan bahwa kedua senyawa ini dapat bekerja sinergis dalam meningkatkan hasil klinis pasien sepsis. Penelitian ini menegaskan pentingnya intervensi berbasis antioksidan dalam manajemen sepsis dan memberikan wawasan berharga untuk penelitian lebih lanjut mengenai penggunaan zinc dan vitamin E sebagai terapi tambahan dalam pengobatan sepsis akibat infeksi S. aureus. Hasil ini menegaskan bahwa suplementasi zinc dan vitamin E berpotensi menjadi strategi suportif yang efektif dalam mengurangi stres oksidatif, memodulasi peradangan, dan memperbaiki prognosis sepsis akibat infeksi Staphylococcus aureus.
Artikel teks lengkap
Referensi
2. Vives-Bauza C, Gonzalo R, Manfredi G, Garcia-Arumi E, Andreu AL. Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA. Neurosci Lett. 2006;391(3). doi:10.1016/j.neulet.2005.08.049
3. Forni C, Facchiano F, Bartoli M, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int. 2019;2019. doi:10.1155/2019/8748253
4. Martischang R, Pires D, Masson-Roy S, Saito H, Pittet D. Promoting and sustaining a historical and global effort to prevent sepsis: The 2018 World Health Organization Save Lives: Clean Your Hands campaign. Crit Care. 2018;22(1). doi:10.1186/s13054-018-2011-3
5. Cavaillon J, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Mol Med. 2020;12(4). doi:10.15252/emmm.201810128
6. Yunanto A, Iskandar, Suhartono E. In-vitro effects of some antibiotic drugs on saliva thiocyanate and oxidation protein products levels on newborn at risk of sepsis. Int J Pharm Clin Res. 2016;8(1). doi:0975155-6
7. Salsabila K, Toha NMA, Rundjan L, et al. Early-onset neonatal sepsis and antibiotic use in Indonesia: a descriptive, cross-sectional study. BMC Public Health. 2022;22(1). doi:10.1186/s12889-022-13343-1
8. Syukri Arisqan F. Analisis Faktor Risiko Sepsis Neonatorum di Indonesia. J Med Hutama. 2021;02(02). doi:2715-9728
9. Sepsis: Kriteria Diagnosa Dan Tatalaksana. J Implementa Husada. 2021;2(3). doi:10.30596/jih.v2i3.11866
10. Dharma BDA, Mulyantari NK, Prabawa IPY. Analisis korelasi kadar serum prokalsitonin dengan jumlah leukosit pada penderita dengan kecurigaan sepsis di RSUP Sanglah, Bali, Indonesia. Intisari Sains Medis. 2020;11(1). doi:10.15562/ism.v11i1.525
11. Irawan E, Medison I, Anggraini F, Mizarti D. Sepsis Et Causa Empiema Dekstra Et Causa Community Acquired Pneumonia Dengan Komorbid Diabetes Melitus. J Kedokt Yars. 2020;28(2). doi:10.33476/jky.v28i2.1418
12. Achmad C R. Sirs/Sepsis Dan Syok Septik Pada Penderita Tumor Ganas Kepala dan Leher. J THT-KL. 2021;2(1):48-61. doi:2-12-0009-48-61
13. Pramana Okaniawan PE, Setyawati Sri Krisna Dewi IA. Diagnosis Dan Pendekatan Terapi Pasien Peritonitis. Ganesha Med. 2022;2(2). doi:10.23887/gm.v2i2.52053
14. Meiliana ML, Lestari YE. Pengaruh Pemberian Steroid Sebagai Terapi Adjuvan Terhadap Parameter Inflamasi Pasien Pneumonia Komunitas Berat Di Rumah Sakit “X” Kota Bandar Lampung. J Med Malahayati. 2024;7(4). doi:10.33024/jmm.v7i4.12853
15. Lubis B, Hasby AY, Putra AO, Yanni GN, Amelia P. Hubungan Neutrophil – Lymphocyte Ratio (NLR) Terhadap Mortalitas Pasien Sepsis di Unit Perawatan Intensif RSUP Haji Adam Malik Pada Tahun 2018. Maj Anest Crit Care. 2021;39(1). doi:10.55497/majanestcricar.v39i1.213
16. Sadiyanto D, Sudadi, Wisudarti Cfr. Nilai Diagnostik Eosinopenia Pada Sepsis Di Icu Rsup Dr. Sardjito. J Komplikasi Anestesi. 2023;4(2). doi:10.22146/jka.v4i2.7291
17. Wu X, Gordon O, Jiang W, et al. Interaction between streptococcus pneumoniae and staphylococcus aureus generates OH radicals that rapidly kill staphylococcus aureus strains. J Bacteriol. 2021;201(21). doi:10.1128/JB.00474-19
18. Aguilera-Alonso D, Nieto SK, Montojo MFA, et al. Staphylococcus aureus Community-acquired Pneumonia in Children After 13-Valent Pneumococcal Vaccination (2008–2018): Epidemiology, clinical characteristics and outcomes. Pediatr Infect Dis J. 2022;41(5). doi:10.1097/INF.0000000000003503
19. Lu M, Fu M, Zhang Y, Shen T, Xie H, Liu D. Septicaemia with deep venous thrombosis and necrotising pneumonia caused by acute community-acquired methicillin-resistant Staphylococcus aureus in an infant with a three-year follow-up: a case report. BMC Infect Dis. 2022;22(1). doi:10.1186/s12879-022-07166-z
20. Thuy DB, Campbell J, Thuy CT, et al. Colonization with staphylococcus aureus and klebsiella pneumoniae causes infections in a vietnamese intensive care unit. Microb Genomics. 2021;7(2). doi:10.1099/mgen.0.000514
21. Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants. 2023;12(11). doi:10.3390/antiox12111942
22. Shahid S, Nisar MI, Jehan F, et al. Co-carriage of Staphylococcus aureus and Streptococcus pneumoniae among children younger than 2 years of age in a rural population in Pakistan. Clin Epidemiol Glob Heal. 2023;21. doi:10.1016/j.cegh.2023.101293
23. Wang SL, Wang JL, Sun SH, et al. Clinical Characteristics and Microbial Profiles of Paediatric Patients with Methicillin-Resistant Staphylococcus aureus Pneumonia in China. Jundishapur J Microbiol. 2022;15(11). doi:10.5812/jjm-132894
24. Knoell DL, Liu MJ. Impact of zinc metabolism on innate immune function in the setting of sepsis. Int J Vitam Nutr Res. 2010;80(4-5). doi:10.1024/0300-9831/a000034
25. Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9(6). doi:10.3390/nu9060624
26. Liu MJ, Bao S, Gálvez-Peralta M, et al. ZIP8 Regulates Host Defense through Zinc-Mediated Inhibition of NF-κB. Cell Rep. 2013;3(2). doi:10.1016/j.celrep.2013.01.009
27. Wessels I, Cousins RJ. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation. Am J Physiol - Gastrointest Liver Physiol. 2015;309(9). doi:10.1152/ajpgi.00179.2015
28. Mertens K, Lowes DA, Webster NR, et al. Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. BJA Br J Anaesth. 2015;114(6):990-999. doi:https://doi.org/10.1093/bja/aev073
29. Prasad AS. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr. 2014;1. doi:10.3389/fnut.2014.00014
30. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11-24. doi:doi.org/10.1007/s10787-017-0309-4
31. Bashandy SAEM, Omara EAA, Ebaid H, Amin MM, Soliman MS. Role of zinc as an antioxidant and anti-inflammatory to relieve cadmium oxidative stress induced testicular damage in rats. Asian Pac J Trop Biomed. 2016;6(12):1056-1064. doi:https://doi.org/10.1016/j.apjtb.2016.08.016
32. Kalavakunda Vijayaraghavan KV, Subramanian Iyyampillai SI, Subramanian SP. Antioxidant potential of zinc-flavonol complex studied in streptozotocin-diabetic rats. CABI database. 2013;2(1). doi:doi/full/10.5555/20133191851
33. Ganatra HA, Varisco BM, Harmon K, Lahni P, Opoka A, Wong HR. Zinc supplementation leads to immune modulation and improved survival in a juvenile model of murine sepsis. Innate Immun. 2017;23(1):67-76. doi:https://doi.org/10.1177/17534259166770
34. Nowak JE, Harmon K, Caldwell CC, Wong HR. Prophylactic zinc supplementation reduces bacterial load and improves survival in a murine model of sepsis. Pediatr Crit Care Med. 2012;13(5):e323-e329. doi:10.1097/PCC.0b013e31824fbd90
35. Slinko S, Piraino G, Hake PW, et al. Combined zinc supplementation with proinsulin C-peptide treatment decreases the inflammatory response and mortality in murine polymicrobial sepsis. Shock. 2014;41(4):292-300. doi:DOI: 10.1097/SHK.0000000000000127
36. Hoeger J, Simon TP, Doemming S, et al. Alterations in zinc binding capacity, free zinc levels and total serum zinc in a porcine model of sepsis. Biometals. 2015;28:693-700. doi:https://doi.org/10.1007/s10534-015-9858-4
37. Hoeger J, Simon TP, Beeker T, Marx G, Haase H, Schuerholz T. Persistent low serum zinc is associated with recurrent sepsis in critically ill patients-A pilot study. PLoS One. 2017;12(5):e0176069. doi:https://doi.org/10.1371/journal.pone.0176069
38. Wilson JX. Evaluation of Vitamin C for Adjuvant Sepsis Therapy. Antioxidants Redox Signal. 2013;19(17). doi:10.1089/ars.2013.5401
39. Guo J, Miao Y, Nie F, et al. Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis. J Nanobiotechnology. 2023;21(1):448. doi:10.1186/s12951-023-02224-3
40. Siddiqui SS, Dhar C, Sundaramurthy V, et al. Sialoglycan recognition is a common connection linking acidosis, zinc, and HMGB1 in sepsis. Proc Natl Acad Sci. 2021;118(10):e2018090118. doi:https://doi.org/10.1073/pnas.2018090118
41. Irie Y, Hoshino K, Kawano Y, et al. Relationship between serum zinc level and sepsis-induced coagulopathy. Int J Hematol. 2021;115(2):1-9. doi:10.1007/s12185-021-03225-4
42. Gaspar HA, Barreto AC, Carvalho WB, Delgado AF. Zinc deficiency in systemic inflammatory response syndrome: cause or consequence? Pediatr Crit Care Med. 2013;14(6):654. doi:10.1097/PCC.0b013e318291811f
43. Zhao Q, Gong Z, Wang J, et al. A Zinc- and Calcium-Rich Lysosomal Nanoreactor Rescues Monocyte/Macrophage Dysfunction under Sepsis. Adv Sci. 2023;10(6). doi:10.1002/advs.202205097
44. Crowell KT, Kelleher SL, Soybel DI, Lang CH. Marginal dietary zinc deprivation augments sepsis‐induced alterations in skeletal muscle TNF‐α but not protein synthesis. Physiol Rep. 2016;4(21):e13017. doi:s://doi.org/10.14814/phy2.13017
45. Crowell KT, Phillips BE, Kelleher SL, Soybel DI, Lang CH. Immune and metabolic responses in early and late sepsis during mild dietary zinc restriction. J Surg Res. 2017;210(12):47-58. doi:https://doi.org/10.1016/j.jss.2016.10.020
46. Liu MJ, Bao S, Napolitano JR, et al. Zinc regulates the acute phase response and serum amyloid A production in response to sepsis through JAK-STAT3 signaling. PLoS One. 2014;9(4):e94934. doi:https://doi.org/10.1371/journal.pone.0094934
47. Akbari G. Role of zinc supplementation on ischemia/reperfusion injury in various organs. Biol Trace Elem Res. 2020;196(1):1-9. doi:10.1007/s12011-019-01892-3
48. Alder MN, Opoka AM, Lahni P, Hildeman DA, Wong HR. Olfactomedin-4 is a candidate marker for a pathogenic neutrophil subset in septic shock. Crit Care Med. 2017;45(4):e426-e432. doi:DOI: 10.1097/CCM.0000000000002102
49. Missier MS, Ramakrishnan M, Paulpandian SDS, Rajeshkumar S, Tania M. Antibacterial, antioxidant and anti-inflammatory activity zinc-titanium dioxide nanocomposite. Bioinformation. 2023;19(5):638. doi:doi: 10.6026/97320630019638
50. Herrera A, Pineda J, Antonio MT. Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environ Toxicol Pharmacol. 2013;36(1). doi:10.1016/j.etap.2013.03.018
51. Atli M, Erikoglu M, Kaynak A, Esen HH, Kurban S. The effects of selenium and vitamin E on lung tissue in rats with sepsis. Clin Investig Med. 2012;35(2):E48-E54. doi:doi/abs/10.25011/cim.v35i2.16288
52. El-Feki MA, Amin HM, Abdalla AA, Fesal M. Immunomodulatory and anti-oxidant effects of alpha-lipoic acid and vitamin E on lipopolysaccharide-induced liver Injury in rats. Middle East J Appl Sci. 2016;6(03):460-467. doi:2077-4613
53. Janka V, Ladislav K, Jozef F, Ladislav V. Restoration of antioxidant enzymes in the therapeutic use of selenium in septic patients. Wien Klin Wochenschr. 2013;125(11):316-325. doi:10.1007/s00508-013-0371-x
54. Kumar S, Saxena J, Srivastava VK, et al. The interplay of oxidative stress and ROS scavenging: antioxidants as a therapeutic potential in sepsis. Vaccines. 2022;10(10):1575. doi:2076-393X/10/10/1575
55. Samadi M, Shirvani H, Rahmati-Ahmadabad S. A study of possible role of exercise and some antioxidant supplements against coronavirus disease 2019 (COVID-19): A cytokines related perspective. Apunt Sport Med. 2020;55(207):115. doi:doi: 10.1016/j.apunsm.2020.06.003
56. Rocha M, Herance R, Rovira S, Hernandez-Mijares A, M Victor V. Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect Disord Targets (Formerly Curr Drug Targets-Infectious Disord. 2012;12(2):161-178. doi:https://doi.org/10.2174/187152612800100189
57. Oyeyemi WA, Akinola AO, Daramola O oluwapo O, et al. Vitamin E and quercetin attenuated the reproductive toxicity mediated by lead acetate in male Wistar. Bull Natl Res Cent. 2022;46(1):22. doi:10.1186/s42269-022-00709-z
58. Shakoor H, Feehan J, Al Dhaheri AS, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143(112):1-9. doi:https://doi.org/10.1016/j.maturitas.2020.08.003
59. Koekkoek WAC, van Zanten ARH. Antioxidant vitamins and trace elements in critical illness. Nutr Clin Pract. 2016;31(4):457-474. doi:https://doi.org/10.1177/0884533616653832
60. Zheng J, Chen H, Wang T, et al. Quality Improvement of Tomato Fruits by Preharvest Application of Chitosan Oligosaccharide. Horticulturae. 2023;9(3). doi:10.3390/horticulturae9030300
Penulis

Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.