DESAIN PRIMER GEN PENGKODE RNA DEPENDENT RNA POLIMERASE (RdRp) UNTUK DETEKSI SARS COV2 DENGAN MENGGUNAKAN REAL TIME POLYMERASE CHAIN REACTION
Abstract
Corona virus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that attacks the respiratory system. Disease caused by infection with this virus is called Corona Virus Disease 19 (COVID-19). Infection due to SARS-CoV-2 was declared by the World Health Organization (WHO) as a pandemic. Detection of infection due to SARS COV2 is carried out using Real Time Polymerase Chain Reaction by detecting the viral RNA sequence as the gold standard. One of the targeted viral genes is RNA-dependent RNA polymerase (RdRp). Detection using PCR consists of nucleic acid isolation, DNA amplification using qPCR and amplification curve reading. Testing for SARS-COV2 using molecular techniques uses several reagents that have been recommended by WHO. These reagents are special and close system where the master mix reagent component has been mixed with the primer so you cannot use reagents in general. Primer is an important component in a molecular detection system. Primer functions as a barrier for the target DNA fragment to be amplified. Each target fragment requires a pair of primers that match the target DNA. This primer needs to be designed to achieve a high success rate in detecting SARS-COV2. In silico primer design will make it easier to obtain good primers for the amplification of gene fragments. Based on the research results, the forward primer sequence was ACCGTAGCTGGTGTCTCTAT and the reverse primer sequence was GTGCCAACCACCATAGAATTTG. Furthermore, an in vitro detection process was carried out to test the success of the primer in forming the desired product. Based on the research results, the primer can stick to the DNA template as evidenced by the formation of an amplification curve with a CT value of 21,627 with optimal PCR conditions through the following stages: Reverse transcription at 37°C, 15 minutes, 1 cycle, Inactivation of Reverse transcriptase and Activation of DNA Polymerase at 95°C for 10 minutes, 1 cycle, Denaturation at 95°C for 10 seconds, 40 cycles, annealing at 56°C for 10 seconds 40 cycles. Followed by the extension stage at 72°C for 30 seconds for 1 cycle.
Full text article
Generated from XML file
References
Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. In International Journal of Antimicrobial Agents (Vol. 55, Issue 3, p. 105924). Elsevier B.V. https://doi.org/10.1016/j.ijantimicag.2020.105924
Prastyowati, A. (2020). Mengenal Karakteristik Virus SARS-CoV-2 Penyebab Penyakit COVID-19 Sebagai Dasar Upaya Untuk Pengembangan Obat Antivirus Dan Vaksin. 11(1).
Rosenblum, M. D., Way, S. S. & Abbas, A. K. (2015). Regulatory T cell memory. Nat Publ Gr 1–12. Nature Publishing Group.
Alves, N., Zauli, G., Lisandre, C., Menezes, P. D., Lommez, C., Oliveira, D., . . . Ferreira, S. D. (2016). Genetics and Molecular Microbiology
Abbas, N., Rasool, M. and Afroze, T. (2005) ‘PCR based diagnosis of hepatitis B virus’, Pakistan Journal of Zoology, 37(4), pp. 285–288.
Hartanti, M. D. (2020). Real-Time Polymerase Chain Reaction for detecting SARS-COV2 in Indonesia: Are the results reliable? Universa Medicina, 39(2), 71. https://doi.org/10.18051/univmed.2020.v39.71-73
Viljoen et al. (2015) Molecular Diagnostic PCR Handbook. Dordrecht: Springer
Kim, J., Lim, J. and Lee, C. (2013) ‘Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: Applications and considerations’, Biotechnology Advances. Elsevier Inc., 31(8), pp. 1358–1373. doi: 10.1016/j.biotechadv.2013.05.010
Chook, J. B. et al. (2015) ‘Universal Primers for Detection and Sequencing of Hepatitis B Virus Genomes across Genotypes A to G’, Journal of Clinical Microbiology, 53(6).
Nurhayati, B. and Darmawati, S. (2017) Biologi Sel dan Molekuler. 1st edn. Jakarta: Kementrian Kesehatan Republik Indonesia
Yano, Y. et al. (2015) ‘Hepatitis B virus infection in Indonesia’, World Journal of Gastroenterology, 21(38), pp. 10714–10720. doi: 10.3748/wjg.v21.i38.10714.
Blirt (2016) PCR Optimization and Troubleshooting. Available at: http://www.dnagdansk.com/media/Downloads/pcr-optimization-and-trouble shooting.pdf.
Thermofisher Scientific (2016) PCR Cycling Parameters–Six Key Considerations for Success, Thermofisher Scientific. Available at: https://www.thermofisher.com/ id/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecularbiology/pcr-education/pcr-reagents-enzymes/pcr-cycling-considerations.html#Annealing.
Olioso, D. et al. (2007) ‘Detection and quantification of hepatitis B virus DNA by SYBR green real-time polymerase chain reaction’, European Journal of Clinical Microbiology and Infectious Diseases, 26(1), pp. 43–50. doi: 10.1007/s10096-006-0223-y.
Liu, S. Y. et al. (2011) ‘Three-dimensional structure of the hepatitis B core antigen particle truncated at residue 154’, Science China Life Sciences, 54(2), pp. 171–174. doi: 10.1007/s11427-010-4098-x.
Gunson, R., Gillespie, G. and Carman, W. F. (2003) ‘Optimisation of PCR reactions using primer chessboarding’, Journal of Clinical Virology, 26(3), pp. 369–373. doi: 10.1016/S1386-6532(03)00006-4.
Behlke, M. A., Jäger, K. B. and Brown, T. (2019) Polymerase Chain Reaction: Theory and Technology. Caister Academic Press. doi: https://doi.org/10.21775 /9781912530243.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. In The Lancet (Vol. 395, Issue 10224, pp. 565–574). https://doi.org/10.1016/S0140-6736(20)30251-8
Wang, M., Zhao, R., Gao, L., Gao, X., Wang, D., & Gallagher, T. (2020). SARS-CoV-2 : Structure , Biology , and Structure-Based Therapeutics Development. 10(November), 1– 17. https://doi.org/10.3389/fcimb.2020.587269
Tan, S. C., & Yiap, B. C. (2009). DNA, RNA, and protein extraction: The past and the present. Journal of Biomedicine and Biotechnology, 2009. https://doi.org/10.1155/2009/574398
Kalendar, R., Lee, D. and Schulman, A. H. (2014) ‘FastPCR Software for PCR, In Silico PCR, and Oligonucleotide Assembly and Analysis’, p. 271.
Ehtisham, M. et al. (2016) ‘Polymerase Chain Reaction (PCR): Back to Basics’, Indian Journal of Contemporary Dentistry, 4(2), p. 30. doi: 10.5958/2320-5962. 2016.00030.9.
Stephenson, F. H. and Abilock, M. C. (2012) ‘PCR Optimization Table of Contents Fall 2012 Optimizing the Polymerase Chain Reaction’, Babec
Bergkvist, A. et al. (2012) A Technical Guide PCR Technologies. Edited by T. Nolan. Sigma-Aldrich. Available at: https://www.sigmaaldrich.com/content/dam/ sigmaaldrich/docs/Sigma-Aldrich/General_Information/1/pcr-technologies-guide.pdf
Lorenz, T. C. (2012) ‘Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies’, Journal of Visualized Experiments, (63), pp. 1–15. doi: 10.3791/3998.
Joshi, M. and Deshpande, J. D. (2011) ‘Polymerase Chain Reaction: Methods, Principles and Application’, International Journal of Biomedical Research, 2(1). doi: 10.7439/ijbr.v2i1.83.
Tahamtan, A., & Ardebili, A. (2020). Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Review of Molecular Diagnostics, 20(5), 453–454. https://doi.org/10.1080/14737159.2020.1757437
Kim, N., Kwon, A., Roh, E. Y., Yoon, J. H., Han, M. S., Park, S.-W., Park, H., & Shin, S. (2020). Effects of Storage Temperature and Media/Buffer for SARS-CoV-2 Nucleic Acid Detection. American Journal of Clinical Pathology, 280–285. https://doi.org/10.1093/ajcp/aqaa207
Widayat, W., Winarni Agustini, T., Suzery, M., Ni’matullah Al-Baarri, A., & Rahmi Putri, S. (2019). Real Time-Polymerase Chain Reaction (RT-PCR) sebagai Alat Deteksi DNA Babi dalam Beberapa Produk Non-Pangan. Indonesia Journal of Halal, 2(1), 26. https://doi.org/10.14710/halal.v2i1.5361
Qiagen (2013) How is ‘Touchdown PCR’ used to increase PCR specificity? Available at: https://www.qiagen.com/us/resources/faq?id=0ffb80ac-7470-4955-93c9- ce455869cb4b&lang=en (Accessed: 15 July 2020)
Kim, J., Lim, J. and Lee, C. (2013) ‘Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: Applications and considerations’, Biotechnology Advances. Elsevier Inc., 31(8), pp. 1358–1373. doi: 10.1016/j.biotechadv.2013.05.010
Promega (2014a) DNA Purification (The basics of DNA isolation, plasmid growth and DNA Quantification), Promega. Available at: https://worldwide .promega.com/resources/guides/nucleic-acid-analysis/dna-purification/ (Accessed: 26 December 2019)
Ruddock, C. A. (2016) ‘Polymerase Chain Reaction (PCR)’, Wiley Encyclopedia of Forensic Science, pp. 1–4. doi: 10.1002/9780470061589.fsa1029.pub2.
Bio-Rad laboratories (2006) ‘Real-Time PCR Applications Guide’, Methods, pp. 2–85
Xiaowei, W. and Seed, B. (2006) ‘High-troughput primer and probe design’, in Real-Time PCR. New York: Taylor and Francis Grou
Prastyowati, A. (2020). Mengenal Karakteristik Virus SARS-CoV-2 Penyebab Penyakit COVID-19 Sebagai Dasar Upaya Untuk Pengembangan Obat Antivirus Dan Vaksin. 11(1).
Rosenblum, M. D., Way, S. S. & Abbas, A. K. (2015). Regulatory T cell memory. Nat Publ Gr 1–12. Nature Publishing Group.
Alves, N., Zauli, G., Lisandre, C., Menezes, P. D., Lommez, C., Oliveira, D., . . . Ferreira, S. D. (2016). Genetics and Molecular Microbiology
Abbas, N., Rasool, M. and Afroze, T. (2005) ‘PCR based diagnosis of hepatitis B virus’, Pakistan Journal of Zoology, 37(4), pp. 285–288.
Hartanti, M. D. (2020). Real-Time Polymerase Chain Reaction for detecting SARS-COV2 in Indonesia: Are the results reliable? Universa Medicina, 39(2), 71. https://doi.org/10.18051/univmed.2020.v39.71-73
Viljoen et al. (2015) Molecular Diagnostic PCR Handbook. Dordrecht: Springer
Kim, J., Lim, J. and Lee, C. (2013) ‘Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: Applications and considerations’, Biotechnology Advances. Elsevier Inc., 31(8), pp. 1358–1373. doi: 10.1016/j.biotechadv.2013.05.010
Chook, J. B. et al. (2015) ‘Universal Primers for Detection and Sequencing of Hepatitis B Virus Genomes across Genotypes A to G’, Journal of Clinical Microbiology, 53(6).
Nurhayati, B. and Darmawati, S. (2017) Biologi Sel dan Molekuler. 1st edn. Jakarta: Kementrian Kesehatan Republik Indonesia
Yano, Y. et al. (2015) ‘Hepatitis B virus infection in Indonesia’, World Journal of Gastroenterology, 21(38), pp. 10714–10720. doi: 10.3748/wjg.v21.i38.10714.
Blirt (2016) PCR Optimization and Troubleshooting. Available at: http://www.dnagdansk.com/media/Downloads/pcr-optimization-and-trouble shooting.pdf.
Thermofisher Scientific (2016) PCR Cycling Parameters–Six Key Considerations for Success, Thermofisher Scientific. Available at: https://www.thermofisher.com/ id/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecularbiology/pcr-education/pcr-reagents-enzymes/pcr-cycling-considerations.html#Annealing.
Olioso, D. et al. (2007) ‘Detection and quantification of hepatitis B virus DNA by SYBR green real-time polymerase chain reaction’, European Journal of Clinical Microbiology and Infectious Diseases, 26(1), pp. 43–50. doi: 10.1007/s10096-006-0223-y.
Liu, S. Y. et al. (2011) ‘Three-dimensional structure of the hepatitis B core antigen particle truncated at residue 154’, Science China Life Sciences, 54(2), pp. 171–174. doi: 10.1007/s11427-010-4098-x.
Gunson, R., Gillespie, G. and Carman, W. F. (2003) ‘Optimisation of PCR reactions using primer chessboarding’, Journal of Clinical Virology, 26(3), pp. 369–373. doi: 10.1016/S1386-6532(03)00006-4.
Behlke, M. A., Jäger, K. B. and Brown, T. (2019) Polymerase Chain Reaction: Theory and Technology. Caister Academic Press. doi: https://doi.org/10.21775 /9781912530243.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. In The Lancet (Vol. 395, Issue 10224, pp. 565–574). https://doi.org/10.1016/S0140-6736(20)30251-8
Wang, M., Zhao, R., Gao, L., Gao, X., Wang, D., & Gallagher, T. (2020). SARS-CoV-2 : Structure , Biology , and Structure-Based Therapeutics Development. 10(November), 1– 17. https://doi.org/10.3389/fcimb.2020.587269
Tan, S. C., & Yiap, B. C. (2009). DNA, RNA, and protein extraction: The past and the present. Journal of Biomedicine and Biotechnology, 2009. https://doi.org/10.1155/2009/574398
Kalendar, R., Lee, D. and Schulman, A. H. (2014) ‘FastPCR Software for PCR, In Silico PCR, and Oligonucleotide Assembly and Analysis’, p. 271.
Ehtisham, M. et al. (2016) ‘Polymerase Chain Reaction (PCR): Back to Basics’, Indian Journal of Contemporary Dentistry, 4(2), p. 30. doi: 10.5958/2320-5962. 2016.00030.9.
Stephenson, F. H. and Abilock, M. C. (2012) ‘PCR Optimization Table of Contents Fall 2012 Optimizing the Polymerase Chain Reaction’, Babec
Bergkvist, A. et al. (2012) A Technical Guide PCR Technologies. Edited by T. Nolan. Sigma-Aldrich. Available at: https://www.sigmaaldrich.com/content/dam/ sigmaaldrich/docs/Sigma-Aldrich/General_Information/1/pcr-technologies-guide.pdf
Lorenz, T. C. (2012) ‘Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies’, Journal of Visualized Experiments, (63), pp. 1–15. doi: 10.3791/3998.
Joshi, M. and Deshpande, J. D. (2011) ‘Polymerase Chain Reaction: Methods, Principles and Application’, International Journal of Biomedical Research, 2(1). doi: 10.7439/ijbr.v2i1.83.
Tahamtan, A., & Ardebili, A. (2020). Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Review of Molecular Diagnostics, 20(5), 453–454. https://doi.org/10.1080/14737159.2020.1757437
Kim, N., Kwon, A., Roh, E. Y., Yoon, J. H., Han, M. S., Park, S.-W., Park, H., & Shin, S. (2020). Effects of Storage Temperature and Media/Buffer for SARS-CoV-2 Nucleic Acid Detection. American Journal of Clinical Pathology, 280–285. https://doi.org/10.1093/ajcp/aqaa207
Widayat, W., Winarni Agustini, T., Suzery, M., Ni’matullah Al-Baarri, A., & Rahmi Putri, S. (2019). Real Time-Polymerase Chain Reaction (RT-PCR) sebagai Alat Deteksi DNA Babi dalam Beberapa Produk Non-Pangan. Indonesia Journal of Halal, 2(1), 26. https://doi.org/10.14710/halal.v2i1.5361
Qiagen (2013) How is ‘Touchdown PCR’ used to increase PCR specificity? Available at: https://www.qiagen.com/us/resources/faq?id=0ffb80ac-7470-4955-93c9- ce455869cb4b&lang=en (Accessed: 15 July 2020)
Kim, J., Lim, J. and Lee, C. (2013) ‘Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: Applications and considerations’, Biotechnology Advances. Elsevier Inc., 31(8), pp. 1358–1373. doi: 10.1016/j.biotechadv.2013.05.010
Promega (2014a) DNA Purification (The basics of DNA isolation, plasmid growth and DNA Quantification), Promega. Available at: https://worldwide .promega.com/resources/guides/nucleic-acid-analysis/dna-purification/ (Accessed: 26 December 2019)
Ruddock, C. A. (2016) ‘Polymerase Chain Reaction (PCR)’, Wiley Encyclopedia of Forensic Science, pp. 1–4. doi: 10.1002/9780470061589.fsa1029.pub2.
Bio-Rad laboratories (2006) ‘Real-Time PCR Applications Guide’, Methods, pp. 2–85
Xiaowei, W. and Seed, B. (2006) ‘High-troughput primer and probe design’, in Real-Time PCR. New York: Taylor and Francis Grou
Authors
Merdekawati, F., & Nurhayati, B. (2023). DESAIN PRIMER GEN PENGKODE RNA DEPENDENT RNA POLIMERASE (RdRp) UNTUK DETEKSI SARS COV2 DENGAN MENGGUNAKAN REAL TIME POLYMERASE CHAIN REACTION. JURNAL RISET KESEHATAN POLTEKKES DEPKES BANDUNG, 15(1), 30-36. https://doi.org/10.34011/juriskesbdg.v15i1.2179

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.