EFEK INFUSUM DAUN KENIKIR (Cosmos caudatus) TERHADAP PERUBAHAN MORFOLOGI DAN TINGKAT KEMATIAN LARVA Aedes aegypti
Abstract
Dengue fever is a serious health problem in Indonesia, caused by the Aedes aegypti mosquito. Mosquito resistance to chemical insecticides is increasing due to inappropriate use, so alternative vector control is needed, including natural larvicides from plants. Kenikir (Cosmos caudatus) is one of the plants that has potential as a larvicide, thanks to its essential oil and secondary metabolites. This study aims to test the effect of kenikir leaf infusion on the mortality of Aedes aegypti larvae with various concentrations and determine the effective concentration as LC50, which kills 50% of larvae. The population in this study was all species of kenikir from Manoko plantation, Lembang, with the sample being the leaves of Cosmos caudatus species. A total of 315 Aedes aegypti larvae were obtained from Loka Litbang and used as research objects. A true experimental method was used with a Static Group Comparison design, involving experimental and control groups. The object of the study was Aedes aegypti instar III larvae tested with kenikir infusion at concentrations of 25%, 35%, 45%, 55%, and 65%. The results showed that the minimum effective concentration was 25%, while the probit test indicated a concentration of 28% as the LC50 in 24 hours. Larval mortality was caused by damage to the outer membrane of the tissue, indicating an effect of the kenikir extract, rather than a lack of food.
Full text article
References
2. kementerian kesehatan. Kasus DBD Meningkat, Kemenkes Galakkan Gerakan 1 Rumah 1 Jumantik (G1R1J) – Sehat Negeriku. kemenkes. Published 2022. Accessed October 3, 2022. https://sehatnegeriku.kemkes.go.id/baca/umum/20220615/0240172/kasus-dbd-meningkat-kemenkes-galakkan-gerakan-1-rumah-1-jumantik-g1r1j/
3. Fajarani R, Adi Ms, Gambaran Demam Berdarah Dengue Kota Semarang Tahun 2014-2019," Jurnal Ilmiah Mahasiswa, 2020;8(1). Accessed October 24, 2022. http://ejournal3.undip.ac.id/index.php/jkm
4. Poltep K, Phadungsombat J, Nakayama EE, et al. Genetic Diversity of Dengue Virus in Clinical Specimens from Bangkok, Thailand, during 2018–2020: Co-Circulation of All Four Serotypes with Multiple Genotypes and/or Clades. Trop Med Infect Dis 2021. 2021;6(3):162. doi:10.3390/TROPICALMED6030162
5. Barrows NJ, Campos RK, Liao KC, et al. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev. 2018;118(8):4448-4482. doi:10.1021/ACS.CHEMREV.7B00719/ASSET/IMAGES/MEDIUM/CR-2017-00719R_0005.GIF
6. Caraballo GI, Rosales R, Viettri M, Ding S, Greenberg HB, Ludert JE. The dengue virus non-structural protein 1 (NS1) interacts with the putative epigenetic regulator DIDO1 to promote flavivirus replication. bioRxiv. 2021;7(3):1-13. doi:10.1101/2021.09.01.458517
7. Hadinegoro SR, Arredondo-García JL, Capeding MR, et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med. 2015;373(13):1195-1206. doi:10.1056/NEJMOA1506223/SUPPL_FILE/NEJMOA1506223_DISCLOSURES.PDF
8. Li L, Lok SM, Yu IM, et al. The flavivirus precursor membrane-envelope protein complex: Structure and maturation. Science (80- ). 2008;319(5871):1830-1834. doi:10.1126/SCIENCE.1153263/SUPPL_FILE/LI-L.SOM.PDF
9. Dias RS, Teixeira MD, Xisto MF, et al. DENV-3 precursor membrane (prM) glycoprotein enhances E protein immunogenicity and confers protection against DENV-2 infections in a murine model. https://doi.org/101080/2164551520201826798. 2020;17(5):1271-1277. doi:10.1080/21645515.2020.1826798
10. Neves-Martins TC, Mebus-Antunes NC, Caruso IP, Almeida FCL, Da Poian AT. Unique structural features of flaviviruses’ capsid proteins: new insights on structure-function relationship. Curr Opin Virol. 2021;47:106-112. doi:10.1016/J.COVIRO.2021.02.005
11. Kementerian Kesehatan. Demam Berdarah mengintai. kemenkes. Published 2024. Accessed September 30, 2024. https://sehatnegeriku.kemkes.go.id/baca/mediakom/20240521/2845637/mediakom-165/
12. Demirak MŞŞ, Canpolat E. Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. Insects. 2022;13(2). doi:10.3390/INSECTS13020162
13. Dinas Kesehatan Jakarta. Fakta-Fakta Penting Fogging. Published 2022. Accessed October 7, 2024. https://dinkes.jakarta.go.id/berita/read/fakta-fakta-penting-fogging
14. Aswi, aswi; sukarna S. Pemodelan bayesian spasial conditional autoregressive (car) pada kasus demam berdarah dengue di indonesia | Jurnal MSA ( Matematika dan Statistika serta Aplikasinya). Jurnal Matematika dan Statistika dan aplikasinya. doi:https://doi.org/10.24252/msa.v10i1.29113
15. Ferede G, Tiruneh M, Abate E, et al. Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia. Epidemiol Health. 2018;40(40). doi:10.4178/EPIH.E2018015
16. Kolo SM. Efektivitas Biolarvasida Ekstrak Daun Sirsak Dan Serai wangi Terhadap Larva Nyamuk Aedes aegypti. J Saintek Lahan Kering. 2018;1(1):13-16. doi:10.32938/SLK.V1I1.441
17. Choi L, Majambere S, Wilson AL. Larviciding to prevent malaria transmission. Cochrane Database Syst Rev. 2019;2019(8). doi:10.1002/14651858.CD012736.PUB2
18. Wasilah SZ, Setiawan BB. Larvicidal Effect of kenikir Leaves Extract (Cosmos caudatus Kunth.) Against Aedes aegypti L. Larvae Vector of Dengue Hemorrhagic Fever. Published online November 1, 2019:254-260. doi:10.2991/ICHS-18.2019.37
19. Aminu NR, Soetjipto H, Kristijanto AI. Larvicide effect of tagetes erecta extract hexane and acetone fraction on instar III and 4 aedes aegypti mosquito larvae. J kim mulawarman. 2023;20(2):64-69. doi:10.30872/JKM.V20I2.772
20. Sayono S, Anwar R, Sumanto D. Larvicidal activity evaluation of the chemical compounds isolated from n-hexane extract of Derris elliptica root against the Temephos-susceptible strain of Aedes aegypti larvae. Biodiversitas J Biol Divers. 2022;23(2):757-764. doi:10.13057/BIODIV/D230221
21. Matsuura HN, Fett-Neto AG. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. Plant Toxins. Published online 2015;12(1):1-15. doi:10.1007/978-94-007-6728-7_2-1
22. Muniandy PD, Riswari SF, Ruchiatan K. Larvicidal Activity of Citrus aurantifolia Decoction against Aedes aegypti Larvae. Althea Med J. 2020;7(1):35-39. doi:10.15850/AMJ.V7N1.1814
23. Laojun S, Chaiphongpachara T. Comparative study of larvicidal activity of commercial essential oils from aromatic rosemary, vanilla, and spearmint against the mosquito Aedes aegypti. Biodiversitas J Biol Divers. 2020;21(6):2383-2389. doi:10.13057/BIODIV/D210607
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.